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Opinion
Glossary

Allee effect: reduced per capita reproductive output or demographic viability in

small populations.

Asymmetric interactions: occur when a specialist interacts with a generalist,

such as a specialist plant interacting with a generalist pollinator.

Bridging plants: a type of keystone plant that provides nectar and pollen

resources during bottlenecks of resource availability.

Framework plants: a type of keystone plant that provides considerable nectar

and/or pollen resources to a large number of pollinator species.

Generalist plant: plant species pollinated by a large number and often a broad

taxonomic range of pollinator species.

Generalist pollinator: pollinator species that visit a large number and often a

broad taxonomic range of plant species.

Pollination network: all the interactions between plants and pollinators within

a given area or time period. Analogous to (or a type of) food web.

Specialist plant: plant species that are pollinated by one or a small number of

pollinator species from a restricted taxonomic range.
Ecological restoration of plant–pollinator interactions has
received surprisingly little attention, despite animal-me-
diated pollination underpinning reproduction of the ma-
jority of higher plants. Here, we offer a conceptual and
practical framework for the ecological restoration of pol-
lination mutualisms. Through the use of targeted resto-
ration plantings to attract and sustain pollinators and
increased knowledge of the ecological requirements of
pollinators, we propose that pollination could be success-
fully restored in degraded ecosystems. The challenge for
pollination biologists is to integrate their findings with
those of plant restoration ecologists to ensure sustain-
able pollination in restored ecosystems.

Pollinator loss and the need for pollination restoration
Approximately 90% of flowering plant species globally are
reliant on biotic pollination for reproduction andmaintain-
ing genetic viability [1]. Because of the economic implica-
tions of reduced crop yield due to pollination failure, the
purported decline of pollination services in agri-environ-
ments has received considerable scientific attention (e.g.
[2–8]). Consequently, there is a growing literature on
restoring pollination services within agricultural settings
[9–12]. Given that crop plants represent <0.1% of angio-
sperm species globally [13,14], this represents a consider-
able bias towards restoration of pollination services in
agricultural landscapes compared with restoration of pol-
lination in non-agricultural habitats.

In human-modified landscapes, habitat degradation,
loss and fragmentation can cause declines in plant and/
or pollinator populations, potentially leading to pollination
limitation [4,15]. Furthermore, the majority of plant popu-
lations surveyed to date experienced pollination limitation
of plant sexual reproduction [16], although the magnitude
of pollination limitation could be overestimated by studies
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that fail to take into account that not all pollination events
result in fruit-set [17]. Given the importance of pollination
and its sensitivity to human disturbance, it is surprising
how little focus has been placed on restoration of animal-
mediated pollination in natural habitats [18,19]. Based on
a search of the terms ‘pollinat*’ and ‘restoration’ in ISIWeb
of Science, only five papers have used plant–pollinator
communities as a metric for determining functional suc-
cess in the restoration of natural landscapes [20–24], out of
22,137 papers devoted to pollination biology (pollinat* in
ISI Web of Science). The few previous studies comparing
plant–pollinator networks between restored and natural
sites have highlighted lower network complexity and ro-
bustness in restored sites [21,24]. Failure to understand,
manage and promote pollinators could lead to decline or
collapse in ecological restoration. With ecological restora-
tion estimated to be a trillion dollar global activity [25],
establishing animal-mediated pollination will be of wide-
spread importance for ensuring resilience in restored plant
communities.
Specialist pollinator: pollinator species that visit one or a small number of

plant species from a restricted taxonomic range.
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Owing to the paucity of information on pollinator resto-
ration, here we review findings from recent community and
population level pollination ecology studies to assess the
challenges involved in reconnecting plants and pollinators,
with particular emphasis on natural area restoration. We
discuss several of the key issues surrounding the develop-
ment of a pollination-based restoration program: (i) struc-
tural characteristics of plant–pollinator networks; (ii)
selecting plants to restore pollinators; (iii) ecological
requirements of pollinators; (iv) landscape structure and
facilitation of pollinator movement; and (v) variation
among biogeographic regions.

Not all restoration projects have the same objective. For
example, if the aim is to restore native plant reproduction,
it might not be crucial that the species composition of the
pollinator community differs from the target natural eco-
system. As long as all functional pollinator groups are
retained and plants are consistently producing viable seed
across years, then pollination could still be considered to
have been functionally restored [26]. However, a far more
intimate knowledge of the ecological requirements of the
whole system is required if the goal is reestablishment of
the original pollinator community or the restoration of both
plants and pollinators.

Structural characteristics of plant–pollinator networks
Inherent characteristics of pollination networks can affect
how they respond to ecological perturbations and ultimate-
ly impact their ease of restoration. Pollinator communities
typically comprise a small number of rare, highly special-
ized species, many moderately specialized species and a
few common, generalist species, which provide the majori-
ty of animal-mediated pollination [27,28]. There are con-
sistent structural characteristics of pollination networks,
including high levels of asymmetry (i.e. specialist plants
interacting with generalist pollinators) [27,29–32] and
nestedness (specialists interacting with a subset of species
that generalists interact with) [31,33]. These features of
pollination networks confer resilience to disturbance, be-
cause as long as the core of generalists is retained, most
plants will have pollinators. The loss of a rare specialist
pollinator is unlikely to result in the loss of a plant [30,34].

General topological patterns of network structure, such
as asymmetry and nestedness appear to vary little tempo-
rally [35–37]. However, species composition and pair-wise
relationships among species can show high temporal vari-
ation [35–38]. Similarly, the food plants used by a given
pollinator species often change between seasons and years
due to shifts in the composition of the flowering communi-
ty. This means that species that appear to be dietary
specialists in a short-term studymight prove to be general-
ists if the study is extended overmultiple years or a greater
number of observations are made [35,37]. These character-
istics suggest that restoration for maximal pollinator di-
versity is important, so that species can continue providing
functional replacements for each other over time [35–38].

Although generalist pollinators visit many plant species
[39], theymight not be as effective at transferring pollen as
pollinators specifically adapted to visiting that plant
[40,41]. For example, several typically bird pollinated
plants suffered reduced seed set when birds were excluded,
allowing visitation only by bees (e.g. [41,42]). Furthermore,
a recent study has shown that when pollen transfer is
considered relative to pollinator visitation, levels of spe-
cialization in plant–pollinator networks increase [43].

Selecting plants to restore pollinators
Several studies have proposed that when restoring natural
areas, plant species should be planted that attract and
sustain pollinators for the duration that they require
nectar and/or pollen [18,44–47]. These have been referred
to as framework and bridging plants depending on how
they function quantitatively and temporally to support the
pollinator community [18].

‘Framework’ plants support pollinator communities by
providing considerable nectar and/or pollen resources to
numerous pollinator species and individuals [18]. Conse-
quently, the use of framework plants might sustain a
pollinator community that could also service smaller or
less attractive members of the plant community [48–53].
For example, restoration research in agricultural land-
scapes has shown that a disproportionate number of visits
by bumblebees are to a small number of plant species [9–

12,54]. Identification and planting of these framework
species can be used to promote effective pollinator restora-
tion (Box 1) and potentially facilitate the reproduction of
less attractive plants within the restoration palette.

A risk in the use of exceptionally nectar- or pollen-rich
plants is that they might compete via pollination, rather
than facilitate the pollination of less attractive plants
[50,52,55]. A key challenge is that it is currently difficult
to predict if plant species that share pollinators will inter-
act competitively or facilitatively. However, there is some
evidence that the directionality of these interactions can
depend on relative plant abundance [50], possibly because
individual pollinators can temporarily specialize on the
more abundant species at the expense of rarer species
[50,56]. Therefore, careful consideration needs to be given
to relative abundances of the different plants when seek-
ing to enhance pollinator visitation to targeted plant
species.

‘Bridging’ plants provide nectar and pollen resources
during otherwise resource-limited times [18,57]. The use of
bridging plants is most important in communities with
pollinators that require pollen or nectar all or most of the
year, such as some vertebrate pollinators [58,59], and
social and/or multivoltine bee species such as bumblebees
(Bombus spp.; Figure 1). Bridging plants can be particu-
larly important for pollinators with relatively specific food
requirements. For example, the honey possum (Tarsipes
rostratus, Tarsipedidae) only consumes the pollen and
nectar of vertebrate-pollinated plants making it reliant
on one or few species of food plants during some seasons
[58]. The necessity for bridging plants varies between
ecosystems. For example, in some environments, such as
tropical forests, species of pollen-feeding or nectarivorous
insects can be active throughout the year necessitating a
year-round flower supply [60]. Conversely, in some envir-
onments with short growing seasons, bridging species
might not be needed because flowering is intense during
the growing season and insects persist during the non-
growing season as eggs or larvae [61].
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Box 1. Case study: restoration of pollination services in the Central Valley of California

In the Central Valley of California, land is managed intensively for row

crop, vineyard and orchard production in large monoculture fields.

Wild bee communities and the pollination services they provide to a

variety of crops are greatly diminished in such landscapes, compared

with diversified, organic plantings grown in more heterogeneous

landscapes that include regions of natural habitat [6,112]. However,

growers are increasingly planting native plant hedgerows along field

edges to restore a range of ecological functions, including pollination

services (Figure I). We used a large dataset on plant–bee interactions

from farms and natural area sites in this region [113] to select plants

that would support the 20 most important crop pollinators (based on

[5,6,114,115]) across their flight seasons. First, we identified the plant

species visited by the largest number of individuals and the species of

these crop–pollinators (framework plants). Second, we compared the

blooming periods of these plants against the flight seasons of the

crop–pollinating bee species to identify any gaps in the provisioning

of floral resources. We added plant species that both bloom during

those gaps and were visited by our crop–pollinating species (bridging

species). Finally, we removed plant species that were impossible to

cultivate or were ‘‘weedy’’ in habit (and therefore unlikely to be

accepted by grower partners), identifying substitute species whenever

possible.

Our conservation partners (Xerces Society, Audubon Society)

identified interested growers and convinced them to use this planting

palette in their hedgerow restoration planting. From 2006, we began

monitoring five pre-restoration sites, along with 11 control sites,

matched in pre-restoration vegetation, adjacent land use and land-

scape context (a ‘‘beyond Before-After-Control-Impact design’’ [116]).

Although we monitor the pollinator communities at these sites

annually, we do not expect to see strong differences among hedgerow

and control sites (which are unmanaged, often weedy, field edges)

until hedgerows mature in several more years. Meanwhile, we are also

studying mature hedgerows (established more than a decade ago)

that contain many of the same plant species, but that were developed

to promote natural enemies and pest control services rather than

pollinator communities and pollination services [117]. A promising

initial finding is greater bee diversity (but not abundance, which is

dominated across all sites by several superabundant halictid species)

on the mature hedgerows compared with controls. In addition, at

hedgerow sites, both honey bees and native bee species preferred

foraging on native hedgerow shrubs relative to exotic weeds co-

flowering at these sites, and native plants were visited by more

species and individuals than exotic plants (L. Morandin and C. Kremen

unpublished data).[()TD$FIG]

Figure I. Hedgerow restoration in the Central Valley, California. The image on the left depicts the initial stages of hedgerow restoration (M. Vaughan, Xerces Society),

whereas the image on the right shows a mature hedgerow, approximately 10 years following restoration (L. Morandin, University of California Berkeley).
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Plant populations in restored areas need to be large
enough to avoid Allee effects, (see Glossary), the commonly
observed reduction in fecundity of plants in small popula-
tions [62–65]. Experiments using supplemental hand-pol-
linations across a range of population sizes have shown
that these Allee effects are often due to pollen-limitation of
seed production [66,67]. Pollen deficits can arise when
pollinators are less likely to visit plants in small popula-
tions or when plants in these populations receive insuffi-
cient compatible pollen on stigmas [68]. Some plants
appear to be resilient to Allee effects even though they
depend on pollinators (compare with [69]); knowledge
about the reproductive biology of these species might
provide clues as to which plant–pollinator interactions
are easier to restore.

Studies on the restoration of animal-mediated pollina-
tion should focus on both the ecological requirements of the
target plant community and the associated pollinators.
Once candidate framework and bridging plants have been
identified, researchers should identify which of these
plants supports the greatest abundance and diversity of
pollinators for the given area.
6

Ecological requirements of pollinators
Pollinator colonization and persistence in restored natu-
ral areas requires that the ecological needs of pollinators
are met either entirely within the restoration site or
within foraging distance of the restoration site. Pollina-
tors depend on several factors for the completion of their
life cycle, such as the availability of food sources, nesting
material and nest sites [4,70–72]. For example, solitary
bees can be limited by the availability of nest sites [73,74],
butterflies require both larval host plants and nectar
resources as adults [75], thynnid wasps (Hymenoptera:
Thynnidae; Figure 1), which are important pollinators of
Australian orchids [76], require a carbohydrate source as
adults (i.e. nectar, secretions from larval psyllids: Hemi-
ptera: Psyllidae, or honeydew) [76] and scarab beetle
larvae (Coleoptera: Scarabaeidae), which they parasitize
[77,78]. Although measures such as providing artificial
nest sites can facilitate colonization and increase bee
populations [73,74], there is little known about the impor-
tance of life cycle requirements other than nectar and
pollen for the successful restoration of most pollinator
species.
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Figure 1. Examples of plants and pollinators demonstrating different levels of specialization. (a) Flowers of Lapeirousia oreogena (Iridaceae) are pollinated exclusively by an

undescribed long-proboscid fly species (Prosoeca sp., Nemestrinidae) (South Africa). (b) A New Holland honeyeater (Phylidonyris novaehollandiae, Meliphagidae), a

generalist bird pollinator, feeding on the specialist plant Banksia coccinea (Proteaceae), which is pollinated by vertebrates (southwestern Australia). (c) The generalist

pollinator Bombus sp. (Apidae) on Perovskia atriplicifolia (Lamiaceae) (North America). (d) The sexually deceptive Drakaea gracilis (Orchidaceae) attracts only a single

species of pollinating thynnid wasp (an undescribed species of Thynnoides, Thynnidae), a generalist nectarivore (southwestern Australia). (e) A gerbil (Gerbillurus paeba)

feeding on flowers of Massonia depressa (Hyacinthaceae), a lily specialized on pollination by small, ground-dwelling mammals (South Africa). Photographs: (a) and (e) S.D.

Johnson, (b) D. McGinn, (c) L. Mandle, (d) B. and B. Wells.
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Pollinator life histories vary in their susceptibility to
disturbance. For example, above-ground nesting and social
bee species have been shown to bemore negatively affected
by isolation from remnant native habitat than below-
ground nesting and solitary bee species [72]. Furthermore,
invertebrate pollinators with narrow habitat require-
ments, slower development, fewer generations per year
and lower mobility have been shown to experience greater
declines in some countries [79]. These trends might indi-
cate that pollinator species with more complex life cycles,
or life cycles that do not facilitate rapid colonization or
recovery from local extinction might be more difficult to
restore.

Landscape structure and facilitation of pollinator
movement
Anthropogenic habitat removal and subsequent landscape
fragmentation can alter pollination and pollinator commu-
7
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nities [57,80–83]. Habitat fragmentation can result in
decreased pollinator abundance and diversity in small
fragments [81]. However, pollinators exhibit a broad range
of responses to habitat fragmentation and ecosystem dis-
turbance [81,84,85]. For example, some bee species are
negatively affected by human disturbance [72,81], whereas
others might benefit [86]. A common consequence of habi-
tat fragmentation is reduction in plant population size [64],
which can lead to a decline in levels of pollination, seed set
and recruitment regardless of any effect from the pollina-
tor community (e.g. [15,66,67,87]).

Ideally, knowledge of dispersal, subsequent colonization
capability, minimum habitat area requirements and po-
tential barriers to dispersal [82,83,88] of the focal pollina-
tor groups would be desirable before undertaking
restoration. To facilitate colonization of restored sites,
consideration needs to be given to the layout of restoration
plantings in relation to the ability of pollinators to use and
cross the landscape matrix. In cases where pollinators
forage widely and are able to traverse a variety of habitats,
initial restoration of animal-mediated pollination might
occur through foraging by wide-ranging generalist polli-
nators, such as Australian honeyeaters (Meliphagidae;
[45]; Figure 1), bumblebees (Figure 1) and the honey bee
Apis mellifera [89–92].

In cases where pollinators are able to move through a
hostile matrix, remnant plants, such as individual trees
can serve as stepping stones, increasing landscape and
genetic connectivity (e.g. [93,94]). The creation of a step-
ping stone habitat could form the initial step of restoration
programs to facilitate dispersal of pollinators between
otherwise isolated fragments to promote diverse pollinator
communities at the landscape scale.

Alternatively, pollinators with limited dispersal capa-
bility can require contiguous links of favorable habitat
(corridors) to facilitate movement into restored sites.
Depending on the landscape and the target organisms,
corridors can refer to either strips of vegetation in an
agricultural landscape, or strips of open vegetation within
a forested matrix. Connection of plant populations by
corridors has been shown to facilitate pollinator movement
[95]. Furthermore, in agricultural and silviculture domi-
nated landscapes, for some plants, pollen transfer has been
shown to be significantly higher between populations con-
nected by corridors than those that were not [96,97]. In
some cases, pollen transfer declined with increasing dis-
tance to the source, indicating limitations to the use of
corridors [98]. Furthermore, the efficacy of corridors for
facilitating dispersal can vary between taxonomic groups
[98]. The abundance of wild bees along linear habitat
corridors in an agricultural landscape has been shown to
decline with distance to remnant semi-natural habitat,
whereas hoverflies showed the reverse trend [98]. Howev-
er, corridors might be the only viable option when the
majority of the landscape is dedicated to agriculture and
large-scale revegetation is impossible.

Corridors can potentially create undesirable side effects
such as facilitating the spread of invasive or edge species
[99]. An alternative is to enlarge the existing habitat area to
reduce thenegativeeffects of small fragment size.This could
have a more pronounced effect on increasing population
8

sizes within a patch, compared with corridors, particularly
when patches increase beyond the minimum area required
for supporting viable pollinator populations [100].

The natural colonization of a restored site and the
complexity of the pollinator community present can be
strongly influenced by its proximity to remnant habitat
[20,21,26]. For relatively immobile pollinator species, pol-
lination restoration might require habitat remnants to be
directly connected by favorable habitat patches, such as
vegetated corridors. For example, foraging ranges of bees
can vary from less than a hundred meters for small-bodied
species to several kilometers for large-bodied species
[91,92]. Where pollination restoration can be achieved by
highly vagile generalist species, stepping stone plantings
might be sufficient to facilitate colonization. In the pres-
ence of a hostile landscape matrix, colonization could be
facilitated by direct connection via corridors. Consequent-
ly, the landscape context of a restoration site and the
ecology of the fauna will both have considerable bearing
on whether or not corridors or stepping stones are effective
or needed in facilitating pollinator colonization.

Captive breeding and reintroduction programsmight be
effective in cases where pollinators have been extirpated
and natural colonization processes are unlikely through
lack of source populations or low dispersal [18], particular-
ly for restoring habitat patches that are isolated from
sources of recruits. However, there could be many chal-
lenges associated with restoring certain pollinators that
have highly specific ecological requirements. To our knowl-
edge, there are no published studies of reintroduction or
captive breeding of native pollinators primarily for rein-
stating pollination in natural or restored areas.

Variation among biogeographic regions
The optimal techniques for facilitating pollination in re-
stored environments could differ markedly between habi-
tats and biogeographic regions. For example, there are
significant geographical differences in levels of specializa-
tion and diversity of plant–pollinator interactions
[101,102]. Among the comparatively well-studied floras,
the Cape Region stands out as a region characterized by
remarkably high levels of both plant and pollinator spe-
cialization [103]. This suggests that pollinators and polli-
nation, if lost from this region, would be comparatively
difficult to restore. Furthermore, pollinator functional
groups (sensu [102]) might show varying levels of morpho-
logical and ecological specialization between regions
depending on the evolutionary and ecological histories
of the plants and pollinators involved [104,105]. Areas
where there is high functional diversity are likely to
require an increased diversity of targeted plantings to
assist in the restoration of these more complex pollinator
communities.

Plants and pollinators from landscapes of different
ecological and evolutionary history are likely to have vary-
ing reproductive and dispersal behaviors and resilience to
habitat fragmentation [106,107]. For example, the old,
geologically diverse but stable landscapes of the Cape
Floristic Region and the Southwest Australian Floristic
Region have facilitated the evolution of diverse heathland
floras characterized by a high incidence of naturally frag-
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Figure I. A framework for the choice of plant species in restoration, based on specialization of pollination system versus ease of restoration. The scatterplot depicts a

hypothetical plant community, with each point representing a single plant species. The difficulty of restoring each plant species has been plotted against the number of

species of visiting pollinators. Panels 1 and 3 depict generalist plants that receive visits from many pollinator species, and Panels 2 and 4 depict plants with more

specialized pollination (fewer visitor species). The relative proportions of plant species that have specialized versus generalized pollination systems (based on the

number of visitors) has been based on an actual plant–pollinator network [118], as shown in the histogram on the left, which shows the number of plant species in the

community exhibiting each level of specialization (expressed as the number of species of visiting pollinator).

Box 2. Incorporating the difficulty of restoring plant species into plant selection

Owing to differences in the ease of restoring plant species, the most

attractive plant species will not necessarily be the most efficient for

achieving rapid restoration of pollinators. Difficulty of restoring each

plant species might be caused by factors such as limitation of

propagule sources, difficulty of establishment (susceptibility to

disease, lack of vigor) and poor long-term establishment. We use

examples from another system that has been well-researched in

terms of restoration practices, the biodiverse Banksia woodland of the

Southwest Australian Floristic Region, to illustrate how the character-

istics of the species in each of these boxes can be used to guide the

restoration process (Figure I). Although Panel 1 contains few plant

species, these are the highest priority for restoration due to ease of

restoration and the large number of pollinator species that they

support. For example, the canopy forming Eucalyptus marginata

(Myrtaceae) can attract over 80 species of nectar- and pollen-feeding

insects at a single site [119]. Panel 2 contains plant species with a

higher level of pollination specialization. Therefore, in restoration,

plant species in this category should be chosen for minimal overlap

with the generalists from Panel 1 to maximize pollinator diversity. For

example, in the Southwest Australian Floristic Region (SWAFR), the

kangaroo paw species, Anigozanthos humilis (Haemodoraceae) is

readily restored and is visited by several honeyeater species [120],

birds that are specialized on a subset of the plant community [47].

Panel 3 contains plant species that are difficult to restore but, if

restoration is successful, will attract a wide range of pollinators. This

option could be pursued if the species attracted a suite of pollinators

not already accounted for in Panel 1 species. In the SWAFR example,

Philotheca spicata (Rutaceae) is difficult to restore (Alcoa World

Alumina, personal communication) but attracts a range of understory

Hymenoptera. Panel 4 represents species that should only be targeted

for restoration if they are plants of special conservation concern, such

as rare or threatened species. For example, many orchids have

specialized mycorrhizal and pollinator relationships making restora-

tion challenging [76,121]. However, because of their popularity and

high degree of threat, orchid conservation is a relatively high priority

in the conservation community.

Opinion Trends in Plant Science January 2011, Vol. 16, No. 1
mented plant populations [107,108]. We predict that in
these landscapes, small-bodied generalist pollinator spe-
cies might be able to access a range of species within a
small area and have naturally small foraging ranges.
Similarly, more specialized small-bodied species might
have restricted dispersal so that they remain in the rela-
tively small, disjunct patches of suitable habitat. At the
other extreme, species from environments with episodic
and patchy flowering, such as deserts, might contain spe-
cies with large foraging ranges. Although these remain
predictions, it highlights the caution required when
extrapolating restoration practices between environments
or biogeographic regions.

Concluding remarks: future research directions
Restoration of pollination systems provides an example
where management at the local scale could potentially
have profound effects on the diversity of pollination inter-
actions at the landscape scale [109]. Future research
should resolve patterns of dispersal by pollinators and
how this process can be facilitated through planting flora
that attract and sustain a variety of pollinator species, with
9
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the ultimate aim of colonization and persistence in resto-
ration sites. The stage of restoration in which specific
framework and bridging species are planted will need to
be determined based on plant phenology and pollinator
requirements. Recent evidence suggests that when pollen
transfer is taken into account in plant–pollinator visitation
webs, levels of specialization increase [43], highlighting the
need for research on the ability of different pollinators to
transfer pollen effectively to target plant species.

Further research is required to determine the extent of
the impacts of invasive pollinators on the success of polli-
nator restoration projects, through competition and trans-
mission of diseases [110]. Given that invasive pollinators
are known to be a problem on multiple continents [111],
such research would have broad implications. By designing
restoration plantings to favor native pollinators, restora-
tion sites could represent an opportunity to create pollina-
tor communities free from invasive pollinators.

To maximize the efficiency of the restoration process,
practitioners should, when choosing plant species for res-
toration of pollination networks, consider not only the
pollinator species attracted but the ease of restoring the
plant species (Box 2). Likewise, choosing the pollinators to
target for restoration should involve both consideration of
the efficacy of the pollinator and how readily they can be
attracted to the site. As such, the final challenge for
pollination biologists is to integrate their findings with
the work of plant restoration ecologists to achieve the
highest degree of ecosystem function.
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